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A methodology, derived by analogy to Shannon’s information-theoretic theory of
communication and utilizing the concept of mutual information, has been developed to
characterize partitioned property spaces. A family of non-intersecting subsets that cover
the “universe” of objects represents a partitioned property space. Each subset is thus an
equivalence class. A partition and it’s associated equivalence classes can be generated
using any one of a number of procedures including hierarchical and non-hierarchical
clustering, direct approaches using rough set methods, and cell-based partitioning, to
name a few. Thus, partitioned property spaces arise in many instances and represent a
very large class of problems. The approach is based on set-valued mappings from equiv-
alence classes in one partition to those in another and provides a coarse-grained means
for comparing property spaces. From these mappings it is possible to compute a num-
ber of Shannon entropies that afford calculation of mutual information, which repre-
sents that amount of information shared by two partitions of a set of objects. Taking
the ratio of the mutual information with the maximum possible mutual information
yields a quantity that measures the similarity of the two partitions. While the focus in
this work is directed towards small sets of objects the approach can be extended to
many more classes of problems that can be put into a similar form, which includes
many types of cheminformatic and biological problems. A number of scenarios are pre-
sented that illustrate the concept and indicate the broader class of problems that can be
handled by this method.
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1. Introduction

The notion of a “property space” provides a rich conceptual framework for
understanding the relationships of objects to one another, although the general
term ‘object’ in most cases of interest in this paper is synonymous with ‘mol-
ecule.’ The use of property spaces may be less important for handling cases
involving relatively small numbers of objects, but they are crucial when dealing
with large numbers objects such as found in combinatorial-chemistry libraries
and corporate compound collections. The nature of a given property space is
related to the way in which objects are “represented” in the space. This generally
is a multi-dimensional vector [1] whose components, called descriptors or attri-
butes, characterize the relevant properties or features of the objects under study.
Each object can then be viewed as a point in property space, and each descrip-
tor corresponds to a coordinate in the multi-dimensional space. Note that even
in coordinate-free cases where, for example, the relationship amongst objects is
given by their similarities, appropriate coordinate systems can be constructed
using techniques such as multi-dimensional scaling or non-linear mapping [2–5].
Distance between objects is usually defined by some type of distance function
(e.g., Euclidean distance, city-block distance, etc.). Thus, property spaces are
metric spaces. It is important to remember that different data representations
lead to different property spaces and that the relationships among objects in
one property space are not necessarily preserved in another property space [6]–a
universal, intrinsic property space does not exist. Such a view of property space,
which is based on point-to-point mappings, can be considered a fine-grained
view. This has important consequences regarding the distribution of objects in
a property space. It is entirely possible that clusters of objects in one property
space may become uniformly spread out in another property space and vice-
versa. In addition, nearest–neighbor relationships may also be lost. The out-
come of such traumatic changes can lead to significant problems in, for example,
dissimilarity-based sampling procedures [7].

Since the objects we are concerned with are discrete entities, and since their
number can be very large but finite, property spaces are discrete, even though the
coordinates describing an object’s position are continuous. Moreover, in general
property spaces are sparse, and the distribution of objects within them is gener-
ally non-uniform – objects derived from chemical and biological systems tend to
occur in clusters much like galaxies within the universe. And like galaxies there
is generally considerable empty space even within clusters of objects.

Considerable work has been carried out over the last 15 or so years to elu-
cidate and study the cluster structure of property spaces in cheminformatics [8,9],
especially after the introduction of combinatorial-chemistry methods in the early
nineties. Clustering is just one way to carve up a property space into a set of
non-interacting subsets that cover the space [10,11]. In set-theoretical language
such a decomposition is called a partition. There is a one-to-one correspondence
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between the non-intersecting subsets of a partition and set-theoretic equivalence
classes, the latter being generated by some form of set-theoretic relation [12].
Thus, a cluster is also an equivalence class [13], which implies that the objects
in a cluster can be interpreted as being, in some sense, equivalent. In addition to
the usual clustering algorithms, algorithms exist such as those utilized in rough
set theory [14] to determine the equivalence classes and thus partitions of a set
of objects. Partitioning property spaces can also be accomplished by dividing
them into non-overlapping cells, which are generally taken to be hypercubes, but
other non-overlapping partitions are also possible although not necessarily easy
to construct for hyper-dimensional property spaces [15]. Thus, such cell-based
property spaces are also partitions in the strict mathematical sense, and each
non-intersecting subset is perforce an equivalence class. Whether the objects in
these hypercubic equivalence classes are in any deep chemical sense equivalent is
debatable. Nevertheless, in a strict mathematical sense they are.

Another important feature of a partition is that geometric relationship of
its non-intersecting subsets to one another is generally lost, except for certain
clustering procedures such a k-means clustering [16] where the location of cluster
centroids is preserved. However, such clustering methods generally require specifi-
cation of the number of clusters, which seriously biases the nature of the clusters.

Because property space is representation dependent (vide supra) the par-
titioning of a set of objects in one representation, by whatever means, will in
general differ from the partitioning of that same set of objects represented differ-
ently but produced by the same procedure. Alternatively, the same set of objects
represented identically but partitioned by two different procedures will also gen-
erally result in different partitions. This raises the important question as to how
similar are the different partitions. The fundamental approach used here to deal
with that important question is based by analogy on Shannon’s information-
theoretic approach to communication [17]. Specifically, the analogy is drawn
between symbols transmitted and received and mappings of objects from an
equivalence class in one partitioning to an equivalence class in another partition-
ing – so-called set-valued mappings. Thus, there is a one-to-one correspondence
between symbols and equivalent classes – all identical symbols belong, of course,
to the same equivalence class. In contrast to the point-to-point mappings dis-
cussed earlier, which are the basis for a fine-grained view of property space, the
set-valued mappings between the subsets of different partitions dealt with in this
work provide a coarse-grained view. Nevertheless, as will be seen in the sequel,
even such a coarse-grained view can provide a useful means for characterizing
partitioned property spaces.

The key concept used here is that of mutual information, which arises
naturally out of the information-theoretic framework erected by Shannon and
is becoming of growing importance in a number of fields [18–23]. Yockey has
described a procedure analogous to that presented here for determining the sim-
ilarity of gene and protein sequences [24].
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A discussion of the basic methodologies needed to develop the theory as
applied to partitioned property spaces is presented. These methodologies include
set partitions, set-valued mappings, information and its relationship to Shannon
entropy, and mutual information, the seminal concept, which underlies this
work. Several simple examples are provided that illustrate the various theoreti-
cal points discussed and indicate how the information-theoretic methodology can
be applied to many problems of interest. The important question of similarity-
induced partitions of property space and the relationships among such spaces
from a coarse-grained perspective is also addressed, and several simple examples
are presented to illustrate the concepts.

2. Methodological considerations

2.1. Partitioned property spaces

There are many ways to generate subsets of objects; the focus here will be
on partitions defined loosely as families of non-intersecting subsets. Consider the
set of n objects

M = {m1, m2, . . . , mi, . . . , mn}, (1)

where n may be large (e.g., 500,000), and the set of relations

R = {RA, RB, RC, . . . }. (2)

The partition of M generated by the relation RA is given as, for example,

M RA⇒ A = {A1, A2, . . . , ANA
}, (3)

where each subset Ai contains nAi
objects

Ai = {mAi

1 , m
Ai

2 , . . . , mAi

nAi
} (4)

and

M = ∪
Ai∈A

Ai and Ai ∩ Aj = Ø for all i, j, (5)

that is the subsets Ai ∈ A cover M and are non-intersecting. Moreover, each
subset constitutes an equivalence class [12]. Thus, a given set of objects can be
described by a family of equivalence classes generated by a given equivalence
relation. The measure or size of, that is the number of elements in, each of the
various sets and subsets is given by

|M| = n =
∑

Ai∈A

|Ai | =
NA∑

i=1

nAi
and |A| = NA. (6)
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Figure 1. A scheme depicting the analogy between information transmitted and the mapping
between the subsets of two partitions.

Other equivalence relations RB, RC, . . . generate different partitions of M, i.e.,

M
RB⇒ B = {B1, B2, . . . , BNB}, (7)

M
RC⇒ C = {C1, C2, . . . , CNC}, (8)

whose sizes are given by expressions, with appropriate modifications, that are
analogous to those given in equation (6).

Partitions can be generated in a number of ways (vide supra). In this work
the emphasis is on partitions induced by similarity- or distance-based relations,
as embodied in hierarchical and non-hierarchical clustering methods [16], by
methods such as those employed in rough set theory (RST) to determine equiv-
alence classes (called indiscernablity classes in RST) directly, and in cell-based
partitions derived from coordinate-based property spaces such as, for example,
those obtained in BCUT property spaces from the program Diverse Solutions
(DVS) developed by Pearlman, et al. [25].

2.2. Set-valued mappings between partitioned property spaces

Mappings between partitioned property spaces can be viewed as analogous
to the transmission of signals between a ‘sender’ and a ‘receiver’ as depicted
in figure 1. Claude Shannon developed an information-theoretic framework for
handling signal transmissions based upon a statistical entropy function [17]. The
set-valued mappings indicated in the figure summarize the different possibilities
that are typically encountered: (1) one-to-one mappings of the objects in a sin-
gle subset in one partition to a single subset in another partition correspond to



6 G.M. Maggiora and V. Shanmugasundaram / Information-theoretic analysis

a ‘perfect’ communication channel – all symbols sent are faithfully received, (2)
one-to-many mappings of the objects in a single subset of one partition to many
subsets in another partition correspond to a ‘noisy’ communication channel – a
given symbol that is sent may be received as any one of a number of symbols, (3)
many-to-one mappings of objects from many subsets in one partition to a single
subset in another partition correspond to an ‘equivocal’ communication chan-
nel – several different symbols sent may be received as the same symbol, and (4)
composite or mixed mappings correspond to a ‘mixed’ communication channel
– all of the above may occur, the latter case being the most prevalent. It follows
that there is a correspondence between subsets and symbols. Thus, a given par-
tition can in a way be viewed as an alphabet, where each subset of the partition
corresponds to an unique symbol of the alphabet [27].

2.3. Information and Shannon entropy

Shannon entropy can be derived from the concept of information in the fol-
lowing way. Information, sometimes called ‘surprisal,’ is defined, in units of ‘bits,’
as [28,17–21]

I(Ai) = log2
1

P(Ai)
, (9)

where P(Ai) is the probability of observing an object from subset Ai ∈ A,

P(Ai) = |Ai |
|M| = nAi

n
, (10)

and the sizes of the sets are given by equation (6). In addition,
∑

Ai∈A

P(Ai) = 1 and P(Ai) � 0, for i = 1, 2, . . . , NA. (11)

Equation (9) makes sense from the following point of view, namely, the more
likely an event is to be observed the less information will be obtained upon
observing it, that is there is less ‘surprise’ in observing the event [29].

Shannon entropy is then defined as the expectation value of the information,

H(A) = 〈I(Ai)〉A

=
∑

Ai∈A

P(Ai) log2
1

P(Ai)

= −
∑

Ai∈A

P(Ai) log2 P(Ai). (12)

It can also be shown that the maximum value of H(A) occurs when all of
the equivalence classes are occupied equally, that is |A1| = |A2| = · · · = ∣∣ANA

∣∣ =
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n̄A, while the minimum occurs when all of the elements of the set reside in a sin-
gle subset, P(Ai) = 1 → H(A) = 0, so that

0 � H(A) � Hmax(A) = log2 N̄A, (13)

where

N̄A = n/n̄A. (14)

If all of the elements are unique n̄A = 1 and thus N̄A = n and Hmax(A) = log2 n.
Consider the information in the case of co-occurrences, that is the joint

information,

I(Ai , Bj ) = log2
1

P(Ai , Bj )
, (15)

where P(Ai , Bj ) is the probability of observing an object from subset Ai ∈ A
[equation (3)] and from subset Bj ∈ B [equation (8)]. In an analogy to the above
case for a single partition A [see equation (9)], I(Ai , Bj ) is the information
gained in observing an object (i.e., object) in Ai ∈ A and in Bj ∈ B. Stated math-
ematically,

P(Ai , Bj ) =
∣∣Ai ∩ Bj

∣∣
|A ∩ B| = nAi ,Bj

n
, (16)

since [30]

|A ∩ B| =
∑

Ai∈A

∑

Bj ∈B

∣∣Ai ∩ Bj

∣∣ =
NA∑

i=1

NB∑

j=1

nAi ,Bj
= n (17)

and

A ∩ B = {Ai ∩ Bj |i = 1, 2, . . . , NA; j = 1, 2, . . . , NB}. (18)

The joint Shannon entropy is then given, analogously to equation (12), as the
expectation value of the joint information,

H(A, B) = 〈
I(Ai , Bj )

〉
A,B

=
∑

Ai∈A

∑

Bj ∈B

P(Ai , Bj ) log2
1

P(Ai , Bj )

= −
∑

Ai∈A

∑

Bj ∈B

P(Ai , Bj ) log2 P(Ai , Bj ). (19)
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In analogy with the case above for the partitioning A, the bounds of H(A, B)

are given by [31]

0 � H(A, B) � Hmax(A, B) = log2 |A ∩ B| = log2 N̄A,B, (20)

where
∣∣Ai ∩ Bj

∣∣ = nAi ,Bj
= n̄A,B for all i = 1, 2, . . . , NA; j = 1, 2, . . . , NB (21)

and

N̄A,B = n

n̄A,B
. (22)

If A and B are independent, i.e., P(Ai , Bj ) = P(Ai) · P(Bj ), the maximum joint
entropy can be written in terms of the marginal entropies H(A) and H(B),

Hmax(A, B) = H(A) + H(B), (23)

and the bounds of H(A, B), become

max[H(A), H(B)] � H(A, B) � H(A) + H(B) [32] (24)

Dependent ⇐ ⇒ Independent

As also indicated below equation (24), moving towards the left of the inequal-
ity leads to dependent, perfect mappings while moving to the right leads to
independent, random mappings. It should also be noted that many mappings
between the subsets of A and those of B exist for values of H(A) and H(B). Joint
information can be generalized to more than two set partitions (variables), i.e.
A, B, C, D, . . . , [33,34], but all discussions in this work will be confined to two.
A series of conditional entropies [17–21] can also be defined but will not be dis-
cussed here, as they are not employed in the analyses presented in this paper.

2.4. Mutual information

Mutual information, which is the basis for much of the analysis that fol-
lows [35], is defined as the difference between the maximum joint entropy and
the observed joint entropy, equations (23) and (19), respectively,

M(A, B) = H(A) + H(B) − H(A, B)

= Hmax(A, B) − H(A, B), (25)

which can be viewed as the amount of information “shared” or “transmitted”
between the two partitionings.
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An alternative but useful expression for mutual information, which can be
derived from equation (25), is given by

M(A, B) =
∑

Ai∈A

∑

Bj ∈B

P(Ai , Bj ) log2
P(Ai , Bj )

P(Ai) · P(Bj )
. (26)

It is clear from equation (26) that if A and B are independent, that is if
P(Ai , Bj ) = P(Ai) ·P(Bj ), then M(A, B) = 0 since log2 1 = 0. Thus, mutual infor-
mation provides a single measure of statistical independence, and is superior to
the use of correlation coefficients that require n(n − 1)/2 terms in the case of n

variates. Moreover, correlation coefficients only strictly apply if the variates are
normally distributed and linearly correlated, while mutual information applies to
any distribution and to non-linearly correlated data.

Bounds on mutual information are given by

0 � M(A, B) � M(A, B)max = min[H(A), H(B)]. (27)

A similarity metric [24] can then be defined as the “normalized” mutual
information

0 � S(A, B) = M(A, B)

M(A, B)max
� 1, (28)

more specifically as the fraction of the maximum information that can be shared
between two partitionings.

This can also be taken as a “normalized” measure of the dependency
between the two partitions, where S(A, B) = 1 indicates maximum dependency
and S(A, B)=0 indicates complete independence. In the former case, M(A, B)=
M(A, B)max = min[H(A), H(B)] can occur in two ways. The first corresponds to
a perfect mapping and obtains when H(A) = H(B) = H(A, B), which from
equations (25) and (27) yields M(A, B)=M(A, B)max. The situation also obtains
when H(A) < H(B) = H(A, B), which does not correspond to a perfect map-
ping, and thus is called a psuedo-perfect mapping and will be discussed further
in section 3.

3. Geometric interpretation of information-theoretic quantities

Additional insights can be obtained by analyzing mutual information,
M(A, B), and its associated marginal and joint entropies, H(A), H(B), and
H(A, B), in geometric terms. The basis for constructing the geometric model
shown in figure 2 is the set of inequalities given by equations (23) and (24),
which can be summarized as

H(A) � H(B) � H(A, B) � Hmax(A, B) = H(A) + H(B), (29)
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Figure 2. Geometric interpretation of information-theoretic equations.

where taking H(A) � H(B) does not affect the generality of the inequality. In the
diagram in figure 2 H(A, B) is plotted against H(A) and H(B). All of the edges
of the cube in figure are of equal length, so that at vertex L, H(A) = H(B) =
H(A, B), at vertex M, H(A) = 0, H(B) = H(A, B), at vertex K, H(A) = H(B) =
1/2(H(A, B)), and at the origin N, H(A)=H(B)=H(A, B)=0. All points on the
top face of the cube satisfy H(A, B)=H(A, B)const. The triangle KLM defines the
set of allowed values of H(A) and H(B) for a specific value of H(A, B)const and
thus the set of allowed values of M(A, B) (see equation (25)). As H(A, B)const
decreases in value from that shown in the figure 2 triangle KLM also decreases
in size until it “collapses” to a point at the origin N. The infinite set of such
triangles “fill in” the tetrahedron KLMN. It is important to note that the lines
corresponding to edges NK, NL, and NM go to infinity so that the full tetra-
hedron is actually infinite in extent. Thus, the infinite tetrahedron represents the
entire set of allowed values of H(A) and H(B) for all values of H(A, B).

Figure 3 depicts the H(A, B)const plane from above. As indicated in the fig-
ure, vertex L corresponds to a perfect mapping where H(A) = H(B) = H(A, B)

(vide supra), so that M(A, B) = H(A) = Mmax(A, B) and thus S(A, B) = 1. All
of the remaining points on edge LM correspond to psuedo-perfect mappings
where H(A) � H(B) = H(A, B), which from equations (25) and (27) again give
S(A, B) = 1. The points on Edge KM correspond to allowed values of H(A)

and H(B) for the case of a random mapping (i.e., independence) where H(A) +
H(B) =Hmax(A, B)= H(A, B), so that M(A, B) = 0 and thus S(A, B) = 0. All of
the remaining points inside triangle KLM plus all points on edge KL except for
the points at vertices K and L correspond to allowed values of H(A) and H(B)

with respect to H(A, B)const. In this region, 0 < M(A, B) < H(A) so that 0 <
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Figure 3. Geometric representation of the plane of mutual information for a fixed value of the joint
entropy H(A, B)const.

S(A, B)<1 within the entire region. From figure 2 it is clear that as H(A, B)const

decreases in value, the smaller the range of allowed H(A) and H(B) values. Also,
for a given value H(A, B)const of the closer points are to edge LM the closer the
corresponding mapping is to a perfect/psuedo perfect mapping, while the closer
points are to edge KM the closer the corresponding mapping is to a random
mapping.

4. Illustrative examples

4.1. Perfect mappings

To help clarify the foregoing material simple examples of three mappings
are presented – perfect, psuedo-perfect, and mixed (cf. figure 1). First, consider
the case of a one-to-one or perfect mapping between two partitions A and B of
the set M of 20 objects,

M = {mi |i = 1, 2, . . . , 20}. (30)

The first partition (i.e., ‘the sender’) is given by

M
RA⇒ A = {A1, A2, . . . , A6}, (31)
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Table 1
One-to-one (‘perfect’) mappings of two property spaces, A & B: Subset view.a

B1 B2 B3 B4 B5 B6

A1 {1,2,3,4} {1,2,3,4}
A2 {5,6,7} {5,6,7}
A3 {8} {8}
A4 {9,10,11,12} {9,10,11,12}
A5 {13,14,15,16,17} {13,14,15,16,17}
A6 {18,19,20} {18,19,20}

{1,2,3,4} {5,6,7} {8} {9,10,11,12} {18,19,20} {13,14,15,16,17}
aNote that the numbers in curly brackets correspond to the elements of set M given by equation
(32).

where

A1 = {m1, m2, m3, m4}, A4 = {m9, m10, m11, m12},
A2 = {m5, m6, m7}, A5 = {m13, m14, m15, m16, m17},
A3 = {m8}, A6 = {m18, m19, m20}.

(32)

Since a perfect mapping corresponds to the case where all of the objects in
a given subset of A map to one and only one subset of B (i.e., ‘receiver’), B is
given by

M
RB⇒ B = {B1, B2, . . . , B6}, (33)

where

B1 = {m1, m2, m3, m4}, B4 = {m9, m10, m11, m12},
B2 = {m5, m6, m7}, B5 = {m18, m19, m20},
B3 = {m8}, B6 = {m13, m14, m15, m16, m17},

(34)

that is A=B. Table 1 summarizes this data. Note that the far right column corre-
sponds to the subsets of partition A (see equation (32)) and the bottom row cor-
responds to the subsets of partition B (see equation (34)). Subsets located within
the center of the table correspond to those objects that are common to the sub-
sets of both partitions and are given in set-theoretic language as intersections of
subsets. For example, A4 ∩ B4 = {9, 10, 11, 12}, which describes the mapping of
elements in A4 to B4 and shows that it is a one-to-one set-valued mapping. In
the special case of a one-to-one mapping, Ai ∩ Bj = Ai = Bj [N.B. that i need
not equal j as seen from equations (32) and (34)] and Ai ∩Ø = Ø∩Bj = Ø, and
thus each row and column contains only a single subset. All of this is summa-
rized in figure 4. Note that the subsets lying on the ‘arrows’ in the figure corre-
spond to intersection subsets of A ∩ B. Taking the measure of all of the subsets
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Figure 4. Example of a one-to-one mapping.

Table 2
One-to-one (‘perfect’) mappings of two property spaces, A & B: Probabilistic view.

B1 B2 B3 B4 B5 B6

A1 0.20 0.20
A2 0.15 0.15
A3 0.05 0.05
A4 0.20 0.20
A5 0.25 0.25
A6 0.15 0.15

0.20 0.15 0.05 0.20 0.15 0.25 1.00

(see e.g. equation (6)) and converting them into probability estimates (see equa-
tions (10) and (16)) yields the values given in table 2, while table 3 contains the
values of the various information-theoretic quantities. As is seen in table 3

H(A) = H(B) = H(A, B) ⇒ M(A, B) ⇒ S(A, B) = 1, (35)

which is expected since the two partitions are identical as shown in table 1. This
corresponds to point L in figures 2 and 3.

4.2. One-to-many or psuedo-perfect (‘noisy’) mappings

Psuedo-perfect or one-to-many (‘noisy’) mappings represent a generaliza-
tion of the previous case, where there is a subsethood relationship between the
subsets of the ‘sender’ A = {A1, . . . , A6} and ‘receiver’ C = {C1, . . . , C10}. Note
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Table 3
One-to-one (‘perfect’) mappings of two property spaces,

A & B: Information-theoretic quantities.

H(A)=2.46596
H(B)=2.46596

H(A, B) =2.46596
M(A, B) =2.46596
S(A, B) =1.00000
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Figure 5. Example of a one-to-many pseudo-perfect mapping.

that the same applies for many-to-one mappings as well as one-to-many map-
pings, only the roles of ‘sender’ and ‘receiver’ are reversed. More explicitly, C is
partitioned into the following subsets:

C1 = {m1, m2}, C6 = {m9, m10},
C2 = {m3, m4}, C7 = {m11, m12},
C3 = {m5}, C8 = {m13, m14, m15},
C4 = {m6, m7}, C9 = {m16, m17, m18},
C5 = {m8}, C10 = {m19, m20},

(36)

which are all subsets of the subsets of A (compare equations (32) and (36)). For
example, A4 ⊇ C6 and A4 ⊇ C7. Figure 5 summarizes this information in a form
analogous to that given in figure 4. It is clear from the figure that H(A)<H(C)=
H(A, C) since the subsets of C and A ∩ C are identical, that is C=A ∩ C. Thus,
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Table 4
Composite (‘mixed’) mappings of two property spaces B & D: Subset view.a

D1 D2 D3 D4 D5 D6

B1 {1,2} {3} {4} {1,2,3,4}
B2 {5} {6} {7} {5,6,7}
B3 {8} {8}
B4 {9} {10,11} {12} {9,10,11,12}
B5 {18,19,20} {18,19,20}
B6 {13} {14} {15,16} {17} {13,14,15,16,17}

{1,2,5,9,13} {10,11,14} {6,8,15,16} {3,7,12,17} {4,18,19,20}
aNote that the numbers in curly brackets corresponds to the elements of set given by equation (36).

from equation (25) M(A, C)=H(A), which implies from equations (27) and (28)
that S(A, C) = 1 . This leads to the somewhat quirky behavior of the similar-
ity index, namely that a ‘noisy’ mapping between two sets of subsets, A and C,
is similar to a perfect mapping. But this only applies in the limited case where
C=A ∩ C. As will be seen in the sequel, such behavior is observed in real data-
sets (Shanmugasundaram et al., in preparation). Although their similarities are
both equal to unity, a psuedo-perfect mapping can be distinguished from a per-
fect mapping, since in the latter case A = B = A ∩ B, and thus the number of
subsets in A and B is equal, that is |A| = |B|. As discussed earlier, all psuedo-
perfect mappings lie on the line LM in figures 2 and 3.

4.3. Composite (‘mixed’) mappings

One-to-one and one-to-many mappings are extremely unlikely to occur in
practice, as are many-to-one mappings. Essentially all situations of interest in
this work are described by composite (‘mixed’) mappings, which are illustrated
by the following example based upon the same set of 20 objects that was used
in the previous examples (see equation (29)). In this case, however, B is reparti-
tioned as D, i.e.,

D1 = {m1, m2, m5, m9, m13}, D4 = {m3, m7, m12, m17},
D2 = {m10, m11, m14}, D5 = Ø,

D3 = {m6, m8, m15, m16}, D6 = {m4, m18, m19, m20},
(37)

which results in a different mapping. Table 4 summarizes the relevant set-data.
As before, subsets located in the center of the table correspond to those objects
that are common to subsets in both partitions, but in distinction to the previ-
ous case each row and column may contain multiple subsets. Taking the union of
all subsets in a given row or column yields the subset in the right most column
or bottom row, respectively, in the table. This is graphically depicted in figure 6.
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Figure 6. Example of a composite or mixed mapping.

Table 5
Composite (‘mixed’) mappings of two property spaces

B & D: Probablistic view.

D1 D2 D3 D4 D5 D6

B1 0.1 0.05 0.05 0.20
B2 0.05 0.05 0.05 0.15
B3 0.05 0.05
B4 0.05 0.10 0.05 0.20
B5 0.15 0.15
B6 0.05 0.05 0.10 0.05 0.25

0.25 0.15 0.20 0.20 0.20 1.00

As before, taking the measure of the subsets and converting them to probabil-
ity estimates gives the values in table 5, while table 6 contains the computed
values of the various information-theoretic quantities of interest. As expected
H(B) � H(D) since D is more “concentrated” (or less dispersed) than B as seen
in tables 1–6. The same holds true for the joint entropies, i.e., H(A, B) � H(B, D)

for exactly the same reason. Based upon this data, it is clear from equation (25)
that M(A, B) = M(A, C) � M(B, D). This follows from the fact that maximum
dependency obtains in a perfect mapping, and thus the amount of information
shared between the two partitions is maximal. As mappings deviate from per-
fect mappings, dependencies between the two partitions are reduced, reducing
the mutual information, until in the case of complete independence, i.e., when
P(Bi , Dj )=P(Bi) · P(Dj ) for all Bi ∈B and Dj ∈D, the mutual information goes
to zero. As expected, S(A, B) � S(B, D) ⇒ 0.



G.M. Maggiora and V. Shanmugasundaram / Information-theoretic analysis 17

Table 6
Composite (‘mixed’) mappings of two property spaces

B & D: Information-theoretic quantities.

H(B) = 2.46596
H(D) = 2.3037

H(B, D) = 3.78418
M(B, D) = 0.985475
S(B, D) = 0.42778

All values of the mutual information not associated with perfect or psuedo-
perfect mappings lie within triangle KLM in figures 2 and 3, and include edges
KL and KM, except for the endpoints L and M. The edge KM is, however, spe-
cial since the mutual information is zero for all points on this edge except for
vertex M.

5. Discussion

A methodology, derived by analogy to Shannon’s information-theoretic the-
ory of communication and utilizing the concept of mutual information, has been
developed to characterize partitioned property spaces. As described in section 2.1
partitioned property space is represented by a family of non-intersecting subsets
that cover the “universe” of objects, each subset is thus an equivalence class. A
partition and it’s associated equivalence classes can be generated using any one
of a number of procedures including hierarchical and non-hierarchical clustering,
direct approaches using rough set methods, and cell-based partitioning, to name
a few. The approach is based on set-valued mappings from equivalence classes in
one partition to those in another and provides a coarse-grained means for com-
paring property spaces as discussed in section 2.2.

As described above, any class of problems that can be formulated as set-
valued mappings between two partitionings can, thus, be treated using the for-
malism described here. And part of the power of the approach is that it can be
applied to virtually all types of partitionings as long as the mapping between the
equivalence classes can be determined. For example, how similar are cell-based
partitionings of property space generated by say 3-D and 2-D BCUTs [25], or
how similar are two property spaces where one is a cell-based property space
that has been generated by say 3-D BCUTs and the other by c-means cluster-
ing generated by a given similarity metric can be analyzed by this approach.
In bioinformatics, for example, comparing protein sequences can be cast into
the framework described here. In this case the two partitionings are identical
and each equivalence class of either partition represents one of the 20 charac-
ter amino acid symbols of the ‘protein alphabet.’ The set-valued mappings are
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then determined from the sequence alignment. Suppose that the alignment shows
that, say, in five cases alanine residues, ‘A’, in protein-1 are replaced by valine res-
idues, ‘V,’ in protein-2. The intersection set of the subset containing ‘A’ in pro-
tein-1 and the subset containing ‘V’ in protein-2 has five elements, and thus has
measure five. This process can be carried for all of the amino acids in protein-
1 and those in protein-2, from which the information-theoretic-based similarity
(see equation (28)) can be computed. Yockey has dealt with this problem in some
detail, although he has not formulated it in terms of set-valued mappings [24].

Another interesting bioinformatics problem is the grouping of proteins into
appropriate functional families. This can be accomplished in several steps. If
only sequence information is available, the similarity matrix for all of the pro-
teins being considered is computed using any one of a number of sequence-based
methods. The similarities are then used as a basis for clustering the proteins
using either a hierarchical or non-hierarchical procedure. It is then assumed that
those proteins located within the same cluster are functionally related. However,
as is well known from numerous studies of small data-sets in property space, the
results of these clusterings are highly dependent on both the sequence similarity
methodology and the clustering procedure used. Thus, the approach described
here can be used to characterize “protein-function space” in terms of the differ-
ent representations and clustering procedures employed (vide infra).

Since the tertiary structure of proteins tends to be conserved to a much
greater extent than primary structure, it is expected that similarities determined
from 3-D structure would more faithfully represent the conserved functional
elements of proteins within a given family or subfamily. Thus, structural simi-
larity should provide a better basis for elucidating the functional relationships
among a large set of proteins with diverse functions. Applying the same cluster-
ing methodologies as those applied to sequence-based similarities, it is not sur-
prising that similar issues would arise regarding the consistency or lack thereof
of results based upon the alignment-based similarity method as well as the clus-
tering methodology used. Again, the current methodology can be applied. In
addition, protein clustering produced by sequence based alignments can be com-
pared to those produced by structure-based alignments.

The information-theoretic methodology described in this work also affords
the opportunity to carry out a meta-analysis of the methodologies used (vide
supra). For example, it is possible to determine the similarity of different
approaches with respect to each other. The similarity matrix can then be used as
a basis for clustering the “methodologies” in a fashion that is totally analogous
that the used to cluster the proteins into families (vide supra). Alternatively, the
similarity matrix can be employed as a basis for generating a low-dimensional (2-
D or 3-D) coordinate system that can be then be used to portray the “method-
ological similarity space.” [6] Now the clusters emerge quite naturally as groups
of points in the space. Points located near each other in the space thus represent
methods that generate similar partitions the protein space.
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These two examples represent just the “tip of the iceberg.” For exam-
ple, metabolic pathways, which are representable by mathematical graphs, can
be analyzed in analogous fashion since it is possible to determine the distance
and similarity between two such metabolic pathway graphs [36]. Thus, pathway
graphs among different species can be treated in essentially the same way as
chemical graphs, and the partitioning of “pathway-graph space” can then be
assessed in the same manner as applied in the examples cited earlier. Many other
examples can be conceived of, those presented here are meant only to suggest the
types of problems the can be addressed.
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